Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis.

نویسندگان

  • Susanne von Caemmerer
  • L Hendrickson
  • V Quinn
  • N Vella
  • A G Millgate
  • R T Furbank
چکیده

To function, the catalytic sites of Rubisco (EC 4.1.1.39) need to be activated by the reversible carbamylation of a lysine residue within the sites followed by rapid binding of magnesium. The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme is thought to aid the release of sugar phosphate inhibitors from Rubisco's catalytic sites, thereby influencing carbamylation. In C3 species, Rubisco operates in a low CO2 environment, which is suboptimal for both catalysis and carbamylation. In C4 plants, Rubisco is located in the bundle sheath cells and operates in a high CO2 atmosphere close to saturation. To explore the role of Rubisco activase in C4 photosynthesis, activase levels were reduced in Flaveria bidentis, a C4 dicot, by transformation with an antisense gene directed against the mRNA for Rubisco activase. Four primary transformants with very low activase levels were recovered. These plants and several of their segregating T1 progeny required high CO2 (>1 kPa) for growth. They had very low CO2 assimilation rates at high light and ambient CO2, and only 10% to 15% of Rubisco sites were carbamylated at both ambient and very high CO2. The amount of Rubisco was similar to that of wild-type plants. Experiments with the T1 progeny of these four primary transformants showed that CO2 assimilation rate and Rubisco carbamylation were severely reduced in plants with less than 30% of wild-type levels of activase. We conclude that activase activity is essential for the operation of the C4 photosynthetic pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of Rubisco activase on C4 photosynthesis and metabolism at high temperature.

The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme facilitates the release of sugar phosphate inhibitors from Rubisco catalytic sites thereby influencing carbamylation. T(1) progeny of transgenic Flaveria bidentis (a C(4) dicot) containing genetically reduced levels of Rubisco activase were used to explore the role of the enzyme in C(...

متن کامل

Antisense Reduction of NADP-Malic Enzyme in Flaveria bidentis Reduces Flow of CO2 through the C4 Cycle [W][OA]

An antisense construct targeting the C4 isoform of NADP-malic enzyme (ME), the primary enzyme decarboxylating malate in bundle sheath cells to supply CO2 to Rubisco, was used to transform the dicot Flaveria bidentis. Transgenic plants (a-NADP-ME) exhibited a 34% to 75% reduction in NADP-ME activity relative to the wild type with no visible growth phenotype. We characterized the effect of reduci...

متن کامل

Antisense reduction of NADP-malic enzyme in Flaveria bidentis reduces flow of CO2 through the C4 cycle.

An antisense construct targeting the C(4) isoform of NADP-malic enzyme (ME), the primary enzyme decarboxylating malate in bundle sheath cells to supply CO(2) to Rubisco, was used to transform the dicot Flaveria bidentis. Transgenic plants (α-NADP-ME) exhibited a 34% to 75% reduction in NADP-ME activity relative to the wild type with no visible growth phenotype. We characterized the effect of re...

متن کامل

Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis.

In C4 plants, carbonic anhydrase (CA) facilitates both the chemical and isotopic equilibration of atmospheric CO2 and bicarbonate (HCO3-) in the mesophyll cytoplasm. The CA-catalyzed reaction is essential for C4 photosynthesis, and the model of carbon isotope discrimination (Delta13C) in C4 plants predicts that changes in CA activity will influence Delta13C. However, experimentally, the influen...

متن کامل

Catalysis during Tobacco Leaf Development'

Transgenic tobacco (Nicofiana fabacum L. cv W38) plants with an antisense gene directed against the mRNA of ribulose-1,sbiphosphate carboxylase/oxygenase (Rubisco) activase grew more slowly than wild-type plants in a C0,-enriched atmosphere, but eventually attained the same height and number of leaves. Compared with the wild type, the anti-activase plants had reduced CO, assimilation rates, nor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 137 2  شماره 

صفحات  -

تاریخ انتشار 2005